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In papers [1 and 2] a solution 1is given for the axisymmetric problem of the
theory of elastlcity using definite integrals of sanalytic functions. In this
paper stresses and strains of an elastic body are presented as integrals of
certain complex functions which are deflned on the contour of the body and
which are not boundary values of the analytic functions, With this defini-
tion the real and imaglinary parts of a function are not interrelated, which
conslderably simplifies the solution. The expressions obtained are used to
derlve the integral equations of the first and second fundamental problems
of the theory of elasticity. The paper considers the cases of a finite and
an infinite body and also & half-space. In this case of the half~space the
solution is found in closed form. A numerical solution of an example of a
mixed problem 1s gilven,

1. Consider a solid elastic body formed by the rotation of a symmetrical
plane figure, We assume that the figure 1s bounded by a simple smooth closed
contour 7 {(Fig.1). It is shown in [2] that in the case of axisymmetric
deformation of such body the dlsplacements may be expressed as follows:

i
1 d
260 ) =~ 37| = @) + @2 =D @) 19 Q) J—re— (.1
t
t
1 — 2} di
260 (5, 1) = — o § B9 @) + (22— ) @' €) + b Q)] e r>0)

o VE—0€ —)
{(t =z -}ir, 2 =3 — 4v)
Here ¢ 1s the shear modulus, v 1z Poisson's ratio, ¢ 1s the affix

of an arbitrary point in the region, o({) and ¢({) are functions which
are holomorphous within the region and
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We represent these functlons by integrals of the Cauchy type
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Here o 1s the affix of a point on the bound-
ary. The direction of travel round the boundary
is such that the region remains on the left. We
shall take f(¢) and F(o) to be functions of
1()oin'§s on the boundary which satisfy conditions

1.2).

We substitute (1.3) into (1.1) and change the
order of integration. Taking into account that
¢

_1_S 1 dt _ 1
oy L Ve—ne—n Ve—ne—0

we obtain the followlng expresslions for the dis-

Fig. 1

placements
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Here we take the branch of the rdot V(“ —1(—1, which becomes a real
positive quantity when the point ¢ colncildes with » . The branch line 1is
shown by the broken line in Fig,1l,

For points lying on the axis of symmetry (r = O) we must take
L { —xf(0) + of (0) + F (0)
2Gw (2, 0) = — 2-"‘_58 P do, 2Gu(z,0) =0 (1.6)
L
where the right-hand side contalns an integral of the Cauchy type.
Simllarly, using the expressions for the stresses from [2] we obtain
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At r = 0 we have
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If we draw a symmetrical, smooth arc within the region, then the intensity
of forces acting on this arc from the direction of the external normal can
be expressed as follows [2]:
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On the axis of symmetry

L=y Otd@cro, (1.10)
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Here ds 1s the differential of arc and o is the inclination of the
normal to the gz-axis,

We introduce the notations
s 8

zZ= &pzrds, R = Sp,ﬂds + SZ sin a ds (1.11)
0 0 0

where the integration is taken along the arc from the polnt on the axis of
symmetry.
Equalities (1.9) can be reduced to the form

1 66—z
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2ni

R=—1—.S [f (0) + @2z — o) [ (o) + F (5)] [V(G——t)(a-—a——Z(.c—z)-}-
L

8

(0 — 2)? ]dﬁ—ﬂg—,}{?)*gf("){g[ _il_—i]sinaldsl}do

+ '(U—t)(o—t—) i o V(U—h)(o‘—a)

The quantity 2nZ has the physical meaning of resultant of the forces
acting on the surface formed by rotation of the arc about the z-axis.

2. If in equalities (1.4) and (1.12) we assume that the points ¢ and
1 are points on the contour, then these equalities can be looked upon as
integral equations for determining the functions s(e¢) and 7{e) . Separa-
ting the real and imaginary parts of these equalitles, we obtain four inde-
pendent real functions for finding two displacements or forces. Therefore
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to a sufficlient extent two of these functions can be used quite freely.

Note that the analytic functions ¢(¢) and y¢(¢) will be Kolosov-Muskhe=-
lishvill functions correspondinﬁ to the plane problem. Therefore, following
the procedure of Sherman [3and 4], we can set

F (0) = kf (0) — of (o) 2.1)

where x = 1 1n the case of the first fundamental problem and % = — x in
the case of the second.

Condition (1.5) gives

1 T
—E§[@+1)f(a)+kf(0) af (o) do
We make the transrormation
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i L L
As a result we obtain
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i
On the basis of (1.4) we have that
1 £ =y - ’ dG'
26w = — [”f(o)—kf(0)+(°+c—22)f(0)]——‘———-_____:
2’”§ V(a—t)(n—?)
zcu=__§[——xf(o)~k/(o)+(o+c—2z>/(o)l——-———_(‘""d"_+9
L @—t@—21 T

Integrating by parts, we obtain
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When r = O we can apply the Sokhotskii~Plemel' formulas to (1.6) and
write

26w (2, 0) =

1 — 1 65— z4
2ni§le(0) — k@) d (0 — 2) “mi”"’d 2
2Gu (74, 0) = 0 (2.4)

Here gz, is the abscissa of the point p or D, ; the integrals in the
right~-hand side should be taken as the principal values in the Cauchy sense,

Note that when x = — x , equalities (2.4) can be easily transformed to the
familiar Sherman-Lauricelll equation.

On the basis of Formulas (1.12) we have the following expressions for the
forces
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Equalities (2.5) and (2.3) can be treated as a system of integral equa-

tions for the solution of the first and second fundamental problems of the
theory of elasticity.

3. All the above formulas are valid also for an elastic space containing
an axisymmetric cavity. In this case the points ¢ and ¢ 1le outside the
contour r . The branch line 18 drawn such that it intersects the x-axis
below the cavity. For points lying on the axis of symmetry below and above
the cavity we have, respectively

Veo—0©@—1)=0—1, Veo—0no—9=—(c—2

Therefore Formulas (1.6) retain their form for points lying below the
cavity. Por points above the cavity the sign of the integral in the first
equality of (1.6) must be changed. In order to satisfy the second equality
we must set ‘

2mgm+nfm+iwnm=c=o (3.1)
L

In evaluating the integrals we take as positive the direction of travel
round the contour such that the infinite region remains on the left.

If we write the first of formulas §1.12) for an arbitrary point above the

cavity, then taking into account (3.1), we obtain
_ 2 2 x + 1)
2= — _<_ = LY A
. = SF(G) do * §/ (0) do (3.2)
L

Here 2nZ, 18 the resultant, taken with opposite sign, of the forces
applied to the cavity.

In tne solution of boundary-value problems we can make use of the integral
equations 2.3; to (2.5). Taking into account (3.1) and (2.2) we can reduce
condition (3.2) to the form

2+ 1) . _ 2k -7 3.3
A —gr-ywwa —Tg—gumw (3.3)

Hence we see that the case of %= 1 corresponds to the action of forces
in equilibrium.

( %5 Consider the half-space g < z,. In this case in Formulas (2.3) and
2.5

s=12y t=1zo+ ir, t=2zy—ir, 0= zq+ iz, do= idz, sina=0
—z']/:r:z—r2 for —oolzl ~—r
V(o—t)(o——;—): V"2 for —r<ca<lr

iVat—rt for rlz oo
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We shall assume that as |x|- =, 7(g) tends to some finite value 4 ,
the same whether x - +® or x - —« , and that for sufficiently large |x|

f@=A4+0(=" ®>0 (4.1)

The integrals in (2.3) and (2.5) might be divergent, in which case they
should be treated as principal values. We express the required function in

the form .
flo) = p (@) + iq (2) (4.2)
w}?ercsb the right-hand side contains real functions; also, from (1.2) and
.
PE=p(—2), q@)=—q(—1x), ple)=4, g()=0 (4.3)

In the solution of the second fundamental problem, 1.e. when displacements
are specified &n the boundary, we set % = — x . Formulas (2.3) and (2.4)
assume the form

26w (z,7) = 2" dz

Vr—=
rdx

}/,.s_xz

These equations are easily reduced to integral equations of the Abel type,
and solving these we obtain

Py ———_, 2Gw (z9, 0) = xp (0)

26u (20,1 = 22 g.(2) 292 % (z,0) = 0 (4.4)

X I B og/—;-.

~

(4.5)

p(2) = 1d Szcw (2o» )rdr

u dr sz_ 72
p () = +w(10v 0), g0 =

We can easily confirm the validity of the latter equallty by assuming
u{x,,r) to satisfy the Hoelder condition in the neighborhood of the point
29 )0

In the solution of the first fundamental problem the stresses 9, (20 1)
and T, (zo, r) are specified on the boundary of the half-space. Formulas (1.11)

q:(z)={%

ii 2Gu (z4, r) 2dr
da:0 ‘/1.2 — 2
0

give y r
z =0, (1 rar, R= S T, (20, r) ridr (4.6)
0 0
Setting x = 1 we obtain from (2.5)
r r
2 S zdx 2 3 — 2z
z2=2(q@_2¢_ R=___S (@) 12— 22 o 4.7
| n i )"Vr’-—:t2 *.7)
Solving these equations, we find that
x
(e = 2 g Zadr P =pO+2 S’iﬁ:ﬂ r (48)
r]/:rz—r2 L

where p(0) 4is an undetermined constant.
. 8. Each of the integral equations {2.3) to (2.5) can be reduced to the
orm
VP ©@av @0+ g@av @01 = W @) (5.1)
b
p(0) == Ref(0), ¢()=1Imf (o)

Here L’ 1is the right-hand half of the contour [ and w(¢) is a given
real function.

Altough in the derivation of (2.3) tp (2.5) 1t was assumed for simplicity
that the finctions f(¢) and F(o) were differentiable, these equalities
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are still valid when f(o) is step-wise continuous and bounded on g .

Dividing the contour L’ by points 0Oy, Oy, ..., 0., Ainto a number (I 4 1)
of sufficlently small intervals and at the ends of each interval setting
r{g) = const , we obtain

{
NP O ) — U (0 D]+ g IV @ ) =V (@ )} =W () (5.2)

n =0
(90=1¢9,=0)
Setting ¢ = t, successively, where m = 1,2,..., I — 1, the point t,
being situated within the interval ¢,, 0,,,, we obtain a system of linear
algebraic equations in p, and gu-

In the solution of the second funda-
mental problem this system must be supple-
mented by two equations for points on the
axis of symmetry 2 and p,.. These equa-
tions may be obtained from (2.4).

In the sclution of the first fundamen-
tal problem one of the quantitlies p, can
be specified arbitrarily.

When the unknowns p, and ¢, have been
found, the stresses and displacements at
points inside the body can be determined
fron Formulas {1.7) and (1.5) in which the
derivatives must be avoided by integrating
by parts.

As an example the problem of the pene-~
tration of an indented conical die into
an elastic half-space has been solved

(F1g.2).
The contact surface was divided into
Fig. 2 10 equal intervals and at the mid-point

of each interval the conditions 20y =~ 1
and u = O were specified, The horizontal boundary was divided into 11
unequal intervals and at the mid-point of each the conditions Z = const and
R = const were upecified. The point lying on the axis of symmetry was not
considered; instead p, was set equal to zero, Pig.2 shows graphs of the
normal tangential stresses on the contact surface, drawn from the mean values
on the intervals,

The resultant of these stresses was found to be 1,29n
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