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In Papers [l and 2] a solution is given for the axisymmetrlc problem of the 
theory of elasticity using definite Integrals of analytic functions. In this 
paper stresses and strains of an elastic body are presented as Integrals of 
certain complex functions which are defined on the contour of the body and 
which are not boundary values of the analytic functions, With this defini- 
tion the real and imaginary parts of a function are not interrelated, which 
considerably simplifies the solution. The expressions obtained are used to 
derive the Integral equations of the first and second fundamental problems 
of the theory of elasticity. The paper considers the cases of a finite and 
an Infinite body and also a half-space. In this case of the half-space the 
solution is found in closed form. A numerical solution of an example of a 
mixed problem is given. 

1. Consider a solid elastic body formed by the rotation of a symmetrical 
plane figure. We assume that the figure Is bounded by a simple smooth closed 
contour L (Flg.1). It Is shown In [2] that In the case of axisymmetric 
deformation of such body the displacements may be expressed as follows: 

i 

(t = 2. + ir, x=3-&) 

Here G is the shear modulus, v Is Polason's ratio, c is the affix 
of an arbitrary point in the region, cp(() and Jl(C) are functions which 
are holomorphous within the region and 

Recp(5) = Re(~f5), Imcp(5) = -Irn!cpTEJf. 

RB@((~) = RcQ(c), Im$(t) = - Jrn$((5) 

We represent these functions by integrals of the Cauchy type 

(1.2) 
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Here a Is the affix of a pc$nt on the bound- 
ary. !l!he direction of travel round the boundary 
Is such that the region remains on the left. We 
shall take J(o) and F(U) to be functions of 
points on the boundary which Satisfy conditions 
(1.2). 

We substitute (1.3) Into (1.1) and change the 
order of Integration. Taking Into account that 

t 
1 s 1 4 

ni t u - 5 JQ - C) (5 - i) 
-____ 
- V(u - t:(u -7j 

we obtain the following expressions for the dls- 

2Gu (z, r) = - & \ [xf (a) + (22 - a) f’ (a) + F (a)] -(’ - ‘) ” 

L 
I/(a - t)(u - ij -t s 

where 

C = & c I(% + 1) f (a) + F (a)ldu (1.5) 
i 

Here we take the branch of the rdot V(u - t) (a - zj I which becomes a real 
positive quantity when the point o coincides with D . The branch line Is 
shown by the broken line In Flg.1. 

For points lying on the axis of symmetry (r = 0) we must take 

2GW (2, 0) = - 2; 
s 

--xf (a) + W'(u) -fi- F(a) du 
u-z , ~Gu (z, 0) = 0 (W 

L 

where the right-hand side contains an Integral of the Cauchy type. 

Similarly, using the expressions for the stresses from [2] we obtain 

cJ,(z,r)= -25 1-2f'.(U)+(Zz-u)j"(u)+F'(u)] 
s 
L 

(Jo (z, 4 = 2$ f’(a) 
s L v(u-~(u-~ +g - 

- & \ [xf (‘3 + (2~ - 4 f’ (4 + F (WI 
(u - z) do 

I/@ - t) (a -Tj (le7) 

ur (6 r) = 
4 (1 A 

2ni f’(u) v(u _d;(u _ ii - (3, - ue 

r,, (z, 4 = - & 1(2z - 4 f” (u) + F’-(u)1 
(a - z) da 

I/@ - t) (a - t-j 

(r > 0) 

At F = 0 we have 
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u, (z, 0) = - &;: s - 2f’ (4 + v (4 + F’ (4 du 
u-z 

L 

1 
o, (z, 0) = oe (2, 0) = z 

s 
2 (1 + 2v) f’(o) + of” (0) + F’ (o) du 

u-z (1.8) 
L 

z,, (4 0) = 0 

If we draw a symmetrical, smooth arc within the region, then the intensity 
of forces acting on this arc from the direction of the external normal can 
be expressed as follows [ 23 : 

Pz (2, 4 = -!-- d \ I- f (4 + (2z - a) f’ (4 + F WI 
(a -2)du 

2nir ds 
L V(u - t)(u - ij 

Pr tz9 4 = 2nir2 ds -L 1 \ if (a) + (22 - a) f’ (a) + F WI 
L 

J/h - 4 (0 - 3+ 

s \ I(3 + 4v) f (0) + (22 - o) 1’ (o) + 
L 

(a - z) da C 

+ F.(u)1 IQ0 - E) (o _-t, 
-7 sina (1.9) 

On the axls of symmetry 

1 
p, (z, 0) = (J* (5 0) = - zi I ‘i - G (4 + of” (4 + F’ W du 

u-z 

Pr (6 o”, = 0 

(1.10) 

Here ds is the differential of arc and Q is tine inclination of the 
normal to the s-axis. 

We introduce the notations 
II s 8 

Z = 
s 

pzrds, R = p,r2ds + Z sin a ds 
s s 

(1.11) 

0 0 0 

where the Integration Is taken along the arc from the point on the SXiS Of 
sylmaetry. 

Equalities (1.9) can be reduced to the form 

2 = & s I- f (4 + (22 - 6) f’ (4 + F (@I [ 6-Z 

L 
d(a-tj (6-q -IId 

(1.12) 

R = &i \ [f (a) + (22 - a) f’ (u) + F (o)] [I’(u - t)(u - ij - 2 (o - z) + 
L 

+ 

(u - 2)2 

1/ (a - t) (a - q 1 
& _ 4 ‘I + ‘) u - z1 

2ni 
VW - h&J - 3 

-l]sina,dn,} da 

The quantity 2sz hae the phyalcal meaning of reeultant of the forces 
acting on the surface formed by rotation of the arc about the r-axis. 

2. If ln equalities (1.4) and (1.12) we assume that the points t and 

tntegral equations for determlnlng the functions y(u) 
are points on the contour, then these equalities can be looked upon ae 

and F(U) . Separa- 
tlng the real and Imaginary parta of these equalities, we obtain four lnde- 
pendent real functions for finding two displacements or forces. Therefore 
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to a sufficient extent two of these functions can be used quite freely. 

Note that the analytic functions m(C) and t(c) will be Kolosov-Muskhe- 
llshvlll functions correspond1 
the procedure of Sherman [3and "& 

to the plane problem. Therefore, following 
1, we can set 

P (a) = kj (a) - a’ (a) 

where k = 1 in the case of the first fundamental problem and k = - x in 
the case of the second. 

Condition (1.5) gives 

c= 2$\ [(x 4 1) f(u) f kf(a) -z!' @)I du 

L 

We make the transformation 

1 
‘Lni s uf' (a, da = - _!_ 2xi f(u)dG=&\fodu 

L 
s 
L i 

As a result we obtain 

C= & 
s 
[(x f 1) f(u) + tk - I) I WI da 

L 

On the basis of (1.4) we have that 

2Gw= giF, [xf @a) - UT% + (u + a - 24 Y(U)lV(u _d; (n_i) 

i: 

ZGu=& 
c 
I- x/(u) - kf + (u-j- 0 - 22) 1'(u)] 

(a- z)du +C 

i V-((I--)(u-_) r 

Integrating by parts, we obtaln 

ZGW= ~~Ixl~~)-~f~(r)l~~~I~(~-~)~~-~)+~~-~~)l- 
i 

1 
-27 ; c [ 

f (4 d 
usa--22 

I%- - t) (a - Z) 1 
ZGu=-2+r 

\ 
Ixj (a) + kj (a)] d Il/(u - 1) (u - i) - (u - 41 - 

. . 

-$-&W, (a 9 6 - 24 (0 - 2). _ (0 + 0 _ 24 @>()) 

V (a - t) (a - i) 1 

(2.2) 

(2.3) 

When r 
write 

= 0 we can apply the Sokhotskll-Plemel' formulas to (1.6) and 

2tiw (Z@,O) = %+ f (4 + & \ lxf (u) - k fl d In (0 - 4 - & \ I (0) d sG 
i i 

ZGu (z,, 0) = 0 

Here zd is the abscissa of the point D or D, ; the Integrals in the 
right-hand side should be taken as the principal values in the Cauchy sense. 
Note that whtn k - - R , equalltlee (2.4) can be easily transformed to the 
familiar Sherman-Laurlcelll equation. 

On the basis of Formulas (1.12) we have the following expressions for the 
forces 
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z ---- & If (0) - m31 d I’t/(u - 1) (0 - 7, - (a - $1 + (2.5) 

(a + 5 - 24 (0 - 4 _ (u + (Ij _ Zz) 

V(u - 1) (a - T) 3 
R= z& I1 k’) + kfl d I@ - 4 h - 0 (0 - i) - (0 - zP1 + ,& 1 f (4 dK Oh f) 

r. 
where 

K (a, t) = (a $ a - 22) v(u - t) (a -i) - 2 (a - z) + (a - 2)' 

V(u - 1) (a - i) l- 
II 

- 4 (1 + 9 f IV@ - tJ (u - 7,) - (a L zI)] sin a&, 
0 

Equalities (2.5) and (2.3) can be treated as a eyetem of integral equa- 
tlon3 for the solution of the first and second fundamental problems of the 
theory of elasticity. 

3, All the above formulas are valid also for an elaatlp space containing 
an axlsymmetrlc cavity. In thle case the points t and t lie outalde the 
contour z . The branch line la drawn such that It lntereecte the r-axis 
below the cavity. For polnte lying on the axle of symmetry below and above 
the cavity we have, respectively 

V(u - f) (a - i) = u - 2, V(u - 1) (a - i) = - (u - 2) 

Therefore Formulas (1.6) retain their form for points lying below the 
cavity. For points above the cavity the sign of the integral ln the first 
equality of (1.6) must be changed. In order to satisfy the second equality 
we must set 4 n 

& \ it% + 1) f W + F WI du = C = 0 (3.4) 

In evaluating the Integrals we take ae positive the direction of travel 
round the contour such that the Infinite region remains on the left. 

If we write the first of formulas 
f 
1.12) for an arbitrary point above the 

cavity, then taking Into account (3.1 , we obtain 

2, = - & \ F (a) da = ’ (“& i, l f (a) da 
: 

Here 2m? 18 the reeultani 
L 

applied to tRe cavity. 
, taken with oppoelte sign, of the forces 

In tne solution of boundary-value problema we can make use of the integral 
Taking into account (3.1) and (2.2) we can reduce 

z. = 2 (x + 1) 
2ni 

f (u)du = - 2 (",, I) \mdu 

L 

(3.3) 

Hence we see 
ln equilibrium. 

& Conalder 

that the case of k- 1 correaponda to the action of forces 

the half-apace a < zc. In thle case ln Formulae (2.3) and 

; = z,, 1 = z. + ir, 7 = z. - ir, u = z. + ix, da = idx, sina = 0 

--iz" for -m<x<---r 

JQo-_l)(o _z = V+ - 9 for -r<x<r 

i f/22 for r<x<m 
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We shall aaaume that as Irl+ OD, y(c) tends to some finite value A 
the same whether x - + o or r - - m , and that for sufficiently large'lrl 

f(o) = A + 0 (I r I-‘) c > 0) (4-f) 

The integral8 ln (2.3) and (2.5) might be divergent, In which case they 
should be treated aa principal values. We express the required function in 
the form 

f(o) = P (2) + ig (z) (4.2) 

where the right-hand side contains real functions; 
(4.1) 

also, from (1.2) and 

P (2) = P (- z), Q (2) = - 4 (-x)7 p(m) =/I, q(m) = 0 (4.3) 

In the solution of the second fundamental problem, I.e. when displacements 
are specified bn the boundary, we set k = - w . Formulas (2.3) and (2.4) 
assume the form r 

2%. 
2cw (zo,r) = - 

n s 
2Gw (zo, 0) = xp (0) 

0 

P (4 v_&v 

r 

2Gu (zo,r) = $ 
c 

q.(x) $E--~, u (z, 0) = 0 
. 
0 

These equations are easily reduced to integral equations 
and solving these we obtaln 

(4.4) 

of the Abel type, 

p (,,.) = L d x 2Gw (zo,r\ rdr 

XL0 )/gqF- s 
(4.5) 

p (0) = y w (z,, 0), 4 (0) = 0 
x 

We can easily confirm the validity of the latter equality by assuming 
u(sOrr) to satisfy the Hoelder condition In the neighborhood of the point 
(Ec,O). 

In the solution of the first fundamental problem the stresses u~(zO~ r)' 

and T,,(% Formulas (1.11) 
give 

r) are specified on the boundary of the half-space. 
, r 

2 = 
s 

U, (z,,, r) rdr, R = 
s 

trz (zo, r) rZdr (4.6) 
II 0 

Setting k = 1 we obtain from (2.5) 
r r 

2 = $ q (2) s xdx 

r/ rP ' 
R = L 

JI s 
p (x) ‘= - 2xa dx 

0 0 1/2ZS 
(4.7) 

Solving these equations, we find that 
x 7 

Q (2) = -& 
c 

Zx dr 

-a’ ,r)/xa--r 
p (x) = p (0) + & 

s 
’ (@ - 2q dr 

+v a? - ra 
(4.8) 

0 

where p(O) is an undetermined constant. 

5. Each of the Integral equations (2.3) to (2.5) can be reduced to the 
form 

s 
[P (o) dU (o, t) + q (o) &'(o,Ol = W (1) (5.1) 

L’ 

P (4 == Re f (u), q (3) = Im f ((~1 
Here L' Is the right-hand half of the contour L and W(t) Is a given 

real function. 

Altough In the derivation of (2.3) tp (2.5) It was assumed for simplicity 
that the flnctlons f(a) and F(o) were differentiable, these equalities 
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are still Valid when y(o) Ie step-wlae continuous and bounded on L . 
Dividing the contour L' by points (Jot $1 . * ., o/+1 Into a number(I +- 1) 

of sufficiently small intervals and at the ends of each Interval setting 
I(O) = const , we obtain 

n -0 
(90 = 91 = 0) 

Setting t = t. successively, where m = 1,2,..., I - 1, the point t, 
being situated within the Interval c,, 
algebraic equations in pm and pa. 

o,+,, we obtain a ayatem of linear 

In the solution of the second funda- 
mental problem this system must be supple- 
mented by two equations for points on the 
axis of syxunetry D and D . . These equa- 
tlons may be obtained from i2.4). 

In the solution of the first fundamen- 
tal problem one of the quantities pa can 
be specified arbitrarily. 

When the unknowns pm and q, have been 
found, the atreaeee and dleplacemente at 
points Inalde the body can be determined 
fron Formulas (1.7) and (1.5) In which the 
derivatives must be avoided by Integrating 
by parts. 

As an example the problem of the pene- 
tration of an Indented conical die Into 
an elaatlc half-apace hae been eolved 
(FIg.2). 

The aontact surface was divided Into 
Fig. 2 10 equal irttervals and at the mid-point 

of each interval the conditiona .% - 1 
and u I 0 were specified. The horizontal boundary wa6 divided Into 11 
uneoual Intervale and at the mid-Doint of each the conditions Z - conat and __~~ . ~.. 
R = aonat were upeclfled. The pblnt lylng on the axIa of aymmetry was not 
considered; inetead p_ was set equal to zero. Pig.2 shows graphs of the 
normal tangential streseea on the contact surface, drawn from the mean values 
on the Intervals. 

The resultant of these atreasea was found to be 1.29% . 

1. Aleksandrov, A.Ia., Reshenle osesImmetrlchnykh zadach 
prl pomoshahi zavislmostel mezhdu osesinrmetriahnyml 
IanllamI (Solution of axlsymmetrlc problems for the 
city with the aid of relations between axisymmetrlc 
of stress). PNM vo1.25, IQ 5, 1961. 

teorll uprugoet3 
I plosklral aosto- 
theory of elastl- 
and plan& atatee 

2. Aleksandrov, ALa. and Solov’ev, Iu.I., Odna form rerhenlla prostran- 
etverulykh osesiatmetrlahnykh zadach teoril uprugostl prl pomoshahl funk- 
tell kompleksno~o peremennogo 1 reshenle etlkh zadach dlla sfery (One 
form of solution to three-dimenalonai axlsynmKtric problm of elastl- 
city theory by meann of functions of 

f 
con@ex v&Iable and the solu- 

tlon of these problems for the sphere . pm Vo1.26, 19 1, 1962. 

3. Sherman, D.I., K reshenllu ploakol statlaheskol zadaahl theorll uprugostl 
prl zadannykh M grlrnitse smeshchenllakh (On the solution of the plane 
static problem of the theory of elrstlclty for dlrplaaemnta Bpeaifled 
on the boundary). Dokl.Akad.Nauk 888R, Vol.37, 19 9, 1940. 

4. Sherman, D-I., K reshenllu ploskol statlcherkol zad8chI tcorll uprugostl 
prI zadannykh vneshnlkh sllakh (On the aolutlon of the plane static 
problem of the theory of elasticity for given external forces), D0k-l. 
Akad,Nauk SSSR, vo1.28,1~1, 1940. 

Translated by J.K.L. 


